

BATTERY SYSTEM TESTER

CONTENT

1. Brief introduction ·······1
2.Safety rules and attentions ······1
3.Internation electric symbol ·······3
4. Structure of meter ···································
5.Instructions of functions ·······4
5-1 Storage battery test ······4
5-2 Engine system activation load test7
5-3 Charging system test ······9
6.FAQ11
6-1 What is the measurement principle of this tester? \cdots 11
6-2 Can it be affected by the installation of negative current inside the vehicle?
6-3 Can this tester predict when the battery become useless?
6-4 Is the CCA value tested by this tester correct?12
6-5 What is the difference between the method of this tester and the load test method?
7.Specification of storage battery13
7-1 JIS translation table ·······························13
7-2 Comparison table of DIN/EN ······················14
8.Knowledge about automobile battery15
8-1 The internal resistance of different types of battery differ
8-2 It is unavailable to know the electric quantity of storage battery by intuition
8-3 Some common abbreviation meaning of storage16

maintain the lowest voltage of 7.2V. The unit of CCA is Ampere. For some vehicles, especially long time used ones, it is hard to start the engine smoothly, and has to be done twice or for some seconds. Actually the electricity consumes most when starting the engine. The voltage drops off from the normal value 12.5V to 10.5V even lower at the moment that large current discharge shortly. The large CCA is very helpful to start the engine smoothly.

★ CA-Cranking Ampere

The main meaning is very close to that of CCA. The unit is Ampere also. The temperature under testing is the only one difference between them. CCA refers to the result that measured under -17.8°C, and CA refers to the result that measured under 0°C. If there indicates both CCA and CA on the battery, CCA value is lower for the reason that the lower temperature is, the worse battery works.

★ AH-Ampere Hour

This is a standard written by Japanese Industrial Standard (JIS). It is explained that the battery discharges with a fixed ampere for 20 hours along with over 10.5V. Therefore the value multiplied by a fixed ampere and the number of hour is Ampere Hour. For example a battery discharges with 5 ampere fixed for 20 hours, its Ampere Hour is 100.

★ DIN-Deutsches Institut für Normung e.V.

Under a cold temperature of $0^{\circ}F(-18^{\circ}C)$, the Ampere quantity is 9.0V 30 seconds with the lowest voltage, while 8.0V 150seconds.

★ IEC- International Electrotechnical Commission

Under an average current, every battery cooled in the situation of $0^{\circ}F$ (-18°C)can load the lowest voltage of 8.4Vfor 60 seconds.

★ BSR-Battery Saving Ratio

Under an average current, every battery cooled in the situation of $0^{\circ}F(-18^{\circ}C)$ can load the lowest voltage of 6.0V for 180 seconds.

★ BCI-Battery Commission of International

Under an average current, every battery cooled in the situation of $0^{\circ}F(-18^{\circ}C) \sim -20^{\circ}F(-29^{\circ}C)$ can load the lowest voltage of 7.2V for 30 seconds.

8-2 It is unavailable to know the electric quantity of storage battery by intuition

Hydrometer can be used to check the condition of the battery. Battery water is distilled water and pure sulfuric acid of the proportion of 1.260/20°C to allocate. For a new battery, it is supposed to supply distilled waterwith reduction of battery water for the reason that the degree of acid is fixed when the quantity of battery water remain the normal range. Distilled water supplement can maintain a certain amount of water, but also the PH value. If the battery works normally, in addition to the PH is fixed, the proportion of the value will be in a certain range.

Battery of small type vehicle					
Voltage (V)	Electric(%) Proportic				
>12. 7	100%	1. 26~1. 28			
12. 6	90%	1. 24			
12. 4	70~80%	1. 22			
12. 1	50%	1. 16			
<12	25%	<1. 13			

If the battery finishes charging, the proportion of battery water does not reach 1.26-1.28, along with the tested voltage under 12.7V, the storage capacity of this battery has descended. It is impossible to recover its life by deliberately adjusting the proportion to 1.26 (Increase the sulfuric acid water), on the contrary shorten its life fast for the reason that it will increase the acidity of battery water, not the voltage however.

8-3 Some common abbreviation meaning of storage

★ RC■Reserve Capacity

Every storage battery has the ability to load averagely 25A electric perminute and maintains lowest 10.5V more or less in the situation of $80^{\circ}F(27^{\circ}C)$.

★ CCA – Cold Cranking Ampere

With the fixed current, every battery can be cooled in the situation of $0^\circ F(-18^\circ C) \sim -20^\circ F(-29^\circ C)$ for 30 seconds and

1.Brief Introduction

This battery storage tester is used for activated style leadacid storage battery, along with checking the following conditions of the battery, starting up, charging, and electrical loading. With great design, easy operation, precise reading, complete functions, this tester supply the readings by a large LCD and hints by sound and light when testing. Precise circuit and strong digital processing unit make it complete collection of a series of complicated data and figure out every test data, which availably by 4-wire Kelvin test connection. Besides it strengthens input protection inside , in order to prevent such situations as polar reversal connection , over-high voltage input, poor contact of the test clamps and so on. That makes sure safer and more convenient when testing.

This tester is the best tool for battery sales, vehicle repair and condition check of all kinds of lead-acid batteries that used in equipment system associated with lead-acid battery.

2.Safety Rules And Attentions

This manual includes instruction, operation warning and maintenance. It is possible to damage the tester without regulations in this manual. This tester is designed and produced strictly according to GB4793.1 electronic measurement instrument safety requirement and IEC/EN61010-1 safety standard. It also reach double insulation over voltage standard CATIII 600V and pollution degree 2.

(1) The tester is available to vehicle of 12V storage battery.

(2) The working voltage of the tester is DC 9V to 18V. Make sure do not check the series connection battery.

(3) The voltage value will be higher than that in the normal situation after the checked battery being fully charged . Please turn on the headlights for 2 to 3minutes, then check the battery when it's voltage value drop to the normal value.

(4) Check the insulating layer of the clamps before measuring. Damage, bareness and disconnection are unacceptable. It is

forbidden to use without covering the rear cover correctly, which can cause electric shock.

(5) Do not use or store the tester in the condition of high temperature, high humidity, combustibility, explosion and strong electromagnetic field.

(6) Do not change the internal circuit at will in order to avoid damaging the tester and keep safe.

(7) Wear proper eye mask when testing or repairing in order to avoid some objects hitting eyes by the engine.

(8) Make sure ventilation when testing or repairing in order to avoid smelling some toxic gas.

(9) When the engine is working, do not put the tester or accessories beside the engine or exhaust pipe in order to avoid damaged by high temperature.

(10) Make sure that repair vehicle under the warnings and attentions in the right procedure written by the manufacturer.

(11)Standard of optional storage battery:

CCA	100-17	00
COA.	100-17	00

I E C: 100-1000

EN: 100-1700

DIN: 100-1000

JIS: need to compare CCA with the table

BATTERY SYSTEM TESTER

Continue table

MODEL	THE SAME MODEL	DIN	EN	MODEL	THE SAME MODEL	DIN	EN
55041	55042	220	360	59226	59215	450	760
55044	55414 88056	265	450	59514		320	540
55046		300	510	59518	59519	395	640
55056		320	540	59615	59616	360	600
55057	54827 88156	320	540	60018	60019	250	410
55068	55069 55548	220	390	60026	58811	440	720
55218		255	420	60044	60038	500	760
55414	55415 55421	265	450	60527	60528	410	680
55422	55566 55040	265	450	61017	61018	400	680
55428	55423 55427	300	510	61023	62529	450	760
55457		265	450	61047	61048	450	760
55529		220	360	62034	62038 62045	420	680
55531	55545 55559L	255	420	63013		470	680
55559	55530 88056	255	420	63545	63549	420	680
55564	55552 55563	255	420	64020	64317 64318	325	550
55564	55565 55548	255	420	64028	64035	520	760
55570	55567 55565L	255	420	64036		460	760
56012		230	390	64317	64318 64323	540	900
56048	56068 56069	250	390	65513		540	900
56049	56069 56073	250	390	65514	65515	570	900
56077	56030	300	510	67043	67045	600	100
56091	55811	3 60	540	68032	68034	600	100
56111	55048	300	540	70029	70038 70027	630	105
56218	56092	300	510	70036	68040 68021	570	950
56219	56216	300	510	71014	71015	700	115
56220		280	510	72512		680	115
56225	56323	300	510	73011		740	120
56318	56312 56311	300	510				

8. Knowledge About Automobile Battery

8-1 The internal resistance of different types of battery differ

The internal resistance differs because of inconformity of internal chemical feature even if with the same type battery. It is very small so that we generallydefine it with unit of milliohm. Internal resistance is a significant technical standard to measure a battery. Normally the battery with small internal resistance has a great ability to discharge. On the contrary the battery with large internal resistance has a little ability to discharge.

15

Continue table

BAT	TERY		CCA		BATT	ſERY		CCA	
NEW JIS	OLD JIS		MF	CMF	NEW JIS	OLD JIS		MF	CMF
46B26L		360			145F51L	NS150L	780	920	
46B26RS		360			145G51R	N150	780	900	1100
34B19RS	NS40ZAS	270	325	400	80D26R	NX110-5	580	580	630
34B19LS	NS40ZALS	270	325	400	80D26L	NX110-5L	580	580	630
46B26LS		360			145G51L	N150L	780	900	1100
48D26R	N 5 0	280	360	420	150F51R	NT200-12	640		
48D26L	N50L	280	360	420	150F51L	NT200-12L	640		
50D20R		310	380	480	165G51R	NS200	935	980	
50D20L		310	380	480	165G51L	NS200L	935	980	
50D23R	85BR60K	500			170F51R	NX250-12	1045		
50D23L	85B60K	500			170F51L	NX250-12L	1045		
50B24R	NT80-S6	390			180G51R	NT250-15	1090		
50B24L	NT80-S6L	390			180G51L	NT250-15L	1090		
50D26R	50D20R		370		195G51R	NX300-51	1145		
50D26L	50D20L		370		195G51L	NX300-51L	1145		
55D23R		355	480	500	190H52R	N200	925	1100	1300
55D23L		355	480	500	190H52L	N200L	925	1100	1300
55B24R	NX100-S6	435	420	500	245H52R	NX400-20	1530	1250	
55B24L	NX100-S6L	435	420	500	245H52L	NX400-20L	1530	1250	

7-2 Comparison table of DIN/EN

MODEL	THE SAME MODEL	DIN	EN	MODEL	THE SAME MODEL	DIN	EN
52805	52815	180	240	56420	56322 88066	300	510
53517		175	300	56530	56618 56638	300	510
53520	53521 53522	150	240	56618	56619 56620	300	510
53625	53638 53836	175	300	56633	56647 56641	300	510
53646	53621 88038	175	300	56820	56821 56828	315	540
53653	53624 53890	175	300	57024	57029	315	540
54038	54039	175	300	57113	57539	400	680
54232		175	300	57114	56821 88074	400	680
54313	54324 54464	220	330	57218	57219	420	720
54317	54312 88146	210	360	57220	57217	420	720
54437	54466 54459L	210	360	57230		380	640
54459	54434 88046	210	360	57412	57413 57412L	400	680
54469	54449 54465	210	360	57512	57513 57531	350	570
54519	54533 54612	210	360	58515	58424	450	760
54523	54524	220	300	58521	58513	320	540
54537	54545 54801	190	300	58522	58514	320	540
54551	54580	220	300	58815	58821	395	640
54533	54577 54579	220	300	58820	58515 58527	395	640
54584	54578	220	300	58827		400	640
54590		210	330	58838	58833 88092	400	680
54827		240	360	59040	59017 59018	360	600
55040	88056	265	450	59218	59219	290	480

3.International Electric Symbol

	DC						
~	AC						
R	DC/AC						
\wedge	warning						
A	dangerous voltage(electric shock)						
Ŧ	earth						
	double insulation						
ф	fuse						
ĒÐ	battery						

4.Structure Of Meter

Introduction of button and clamp <▲><▼>: increase, decrease, turn up/down the page b <ESC>: cancel, undo, return <ENTER>: select, enter, test the red clamp: positive connection the black clamp: negative connection

Display instructions:

5.Instructions Of Functions

5-1 Storage battery test

5-1-1 Preparation

If the engine is working, please turn off first and switch the key to off location.

After driving for a while, the voltage value will be higher than that in the normal situation after the checked battery being fully charged . Please turn on the headlights for 2 to 3 minutes, then check the battery when it's voltage value drop to the normal value.

5-1-2 Operation procedure

(1) Make the red clamp connect to the positive polar, and the black to the negative. Make sure all connections are well contacted in order to void affected result.

(2) Press $< >> \forall >$ button to select test function, and then press < ENTER> further. See the picture:

(3) Press $< > < \lor$ button to select test standard according to the standard of storage battery. If it is JIS standard, need to check CCA with the comparison table. Then select CCA(SAE) as the test standard to press <ENTER> further. See the picture:

(4) According to the value indicated on the battery, press <▲>
<>> button to adjust the reference value of the battery. Long press <▲><
>> button to adjust the number continuously. See the picture:

7. Specification Of Storage Battery

The data in the table is just for reference. Actual value must be referred to the manufacturer.

7-1 JIS translation table

BAT	TERY		CCA		BATT	TERY		CCA	
NEW JIS	OLD JIS		MF	CMF	NEW JIS	OLD JIS		MF	CMF
26A17R		200			55B24RS	NT80-S6S	430	420	500
26A17L		200			55B24LS	NT80-S6LS	430	420	500
26A19R	12N24-4	200	220	264	55D26R	N50Z	350	440	525
26A19L	12N24-3	200	220	264	55D26L	N50ZL	350	440	525
28A19R	NT50-N24	250			60D23R		520		
28A19L	NT50-N24L	250			60D23L		520		
32A19R	NX60-N24	270	295		65D23R		420	540	580
32A19L	NX60-N24L	270	295		65D23L		420	540	580
26B17R		200			65D26R	NS70	415	520	625
26B17L		200			65D26L	NS70L	415	520	625
28B17R		245			65D31R	N70	390	520	630
28B17L		245			65D31L	N70L	390	520	630
28B19R	NS40S	245			70D23R	35-60	490	540	580
28B19L	NS40LS	245			70D23L	25-60	490	540	580
32B20R	NS40	270			75D23R		500	520	580
32B20L	NS40L	270			75D23L		500	520	580
32C24R	N40	240	325	400	75D26R	F100-5	490		
32C24L	N40L	240	325	400	75D26L	F100-5L	490		
34B17R		280			75D31R	N70Z	450	540	735
34B17L		280			75D31L	N70ZL	450	540	735
34B19R	NS40ZA	270	325	400	80D23R		580		
34B19L	NS40ZAL	270	325	400	80D26L		580		
36B20R	NS40Z	275	300	360	85B60K				500
36B20L	NS40ZL	275	300	360	85BR60K				500
36B20RS	NS40ZS	275	300	360	95D31R	NX120-7	620	660	850
36B20LS	NS40ZLS	275	300	360	95D31L	NX120-7L	620	660	850
38B20R	NX60-N24	330	340	410	95E41R	N100	515	640	770
38B20RS	NT60-N24S	330	340	410	95E41L	N100L	515	640	770
38B20L	NX60-24L	330	340	410	105E41R	N100Z	580	720	880
38B20LS	NX60-24LS	330	340	410	105E41L	N100ZL	580	720	880
40B20L		330			105F51R	N100Z	580		
40B20R		330			105F51L	N100ZL	580		
42B20R		330			115E41R	NS120	650	800	960
42B20L		330			115E41L	NS120L	650	800	960
42B20RS		330			115F51R	N120	650	800	960
42B20LS		330			115F51L	N120L	650	800	960
46B24R	NS60	325	360	420	130E41R	NX200-10	800	-	
46B24L	NS60L	325	360	420	130E41L	NX200-10L	800		
46B24RS	NS60S	325	360	420	130F51R			800	
46B24LS	NS60LS	325	360	420	130F51L			800	
46B26R		360			145F51R	NS150	780	920	

6-4 Is the CCA value tested by this tester correct?

CCA is looked as a control standard with the produce of the battery. According to the accumulated records, the tested value of new battery is 10-15% higher than the standard value, and along with consuming of the battery, the value is getting close to standard, even lower afterward.

6-5 What is the difference between the method of this tester and the load test method?

The load test method: According to the physical formula R=V/1, test equipment forcibly make the high permanent DC current (presently 40-80A large current is available) go through the battery shortly (about 2-3 seconds). And then the tested voltage of the battery can be used to figure out the internal resistance by the formula.

The disadvantage of this method:

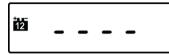
(1) Just available for large capacitance battery or storage battery. The small capacitance battery can not load 40-80A large current in 2-3 seconds.

(2) When the large current going through the battery, there comes out polarization phenomenon from internal electrode, which can cause polarization internal resistance. As a result it has to be tested in a short time. Otherwise there is a large error of the internal resistance value.

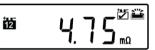
(3) The internal electrode will be damage generally when large current go through the battery.

The method of this tester:Battery is actually equivalent to an active resistance. So we add a fixed frequency and small current to it, and then sample the voltage value. Eventually the internal resistance can be figured out after some operation such as rectificationand smoothing.

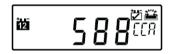
The advantage of this method:


(1)It is available to almost all kinds of batteries, including the small capacitance battery. Generally it is used to test internal resistance of notebook battery.

(2)No much damage to the battery.



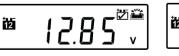
(5)After adjusting the reference test value of the battery, press <ENTER> to star testing.

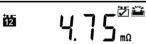

(6) It will display the result after finishing test:

Voltage

Internal resistance

Cold cranking ability


Battery life


(7)Press $< > < \lor >$ to turn the page to review the other results of the test. Press < ENTER> to return step (3) to select test standard. Press < ESC> to return step (2) to select test function of the battery.

5

5-1-3 Instruction of test result

★ Normal

Voltage

Internal resistance

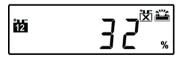
Cold cranking ability

Voltage of the battery: 12.85V

Fully charged	100%	12.78V
	75%	12.54V
	50%	12.30V
	25%	12.12V
Totally disch	arged	11.94V
CCA value 58	8CCA	

Check the condition of battery

Internal insulation 4.75mΩ


The higher of the CCA value , the lower of the internal insulation normally.

Remark: Different material of the battery produced by various manufacturers can cause different internal insulation. So there is no fixed standard. But there is little difference among the internal insulation of the battery with the same model from the same manufacturer.

Life: Display the condition of the battery. Suggest replacing the battery when it shows below 45%.

Life	Test Result	Condition of the battery
>80%	good	Very good
>60%	ОК	Good
>45%	pay attention	need to pay attention, nearly use out
<45%	replace	use out, need to replace

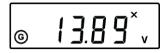
★ Suggest replacing

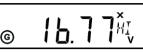
The result indicates the battery is bad and remains 32% of life. So suggest replacing the battery.

6.FAQ

6-1 What is the measurement principle of this tester?

The battery will gradually aging with increase of time. The main reason is that it can no longer generate some effectively chemical reaction because of aging of the surface of the battery plate. That is why most of the batteries can longer be used mainly. International Electric and Electronic Engineer Association(IEEE)formally looks the Conductivity Test as one of the standard of checking lead acid storage battery. It points out from IEEE standard 1118-1996 that :Conductivity Test is used to test AC current generated by putting the known frequency and amplitude AC signal to both sides of the battery. AC conductivity value is the ratio of AC current signal which keeps same phase with AC voltage and the AC voltage. This tester is designed from this principle actually.


6-2 Can it be affected by the installation of negative current inside the vehicle?


All the negative currency will affect the result. Therefor please remove the negative currency prior to checking, in order to achieve the accurate data.

6-3 Can this tester predict when does the battery become useless?

The internal resistance of the sealed lead-acid battery is complicated. It is generated by ohm internal resistance, concentration polarization internal resistance, chemical reactions internal resistance and interference effect caused by double capacitance's charging. The ingredient of internal resistance and its relative content will change with different test method and different test moment, which can lead to different tested value of the internal resistance. And there is no strict relationship between internal resistance (or conductance) and capacitance of the sealed lead-acid battery. So it is impossible to predict the life of battery according to a single battery's internal resistance. But it can be predicted the life of the battery will be over soon from the sudden increase of its internal resistance and decrease of its conductance.

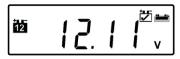

following picture and accompanied by a beep prompt and flash screen.

generator output current voltage

generator output highest voltage

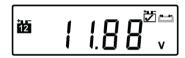
generator output lowest voltage

(7)Press <ESC> to return step (3).


5-3-3 There are some problems in the system

 \bigstar If the voltage is high than 15.00V, please check the voltage regulator.

 \star If the voltage is lower than 13.30V, please check the connections, wires and the engine.


Data Re	Data Reference Table (12V system)						
Status	Voltage	Condition					
Headlights and	>13.5	normal					
air-condition off	13.2~13.5	general					
(need to step the gas	13.0~13.2	pay attention					
pedal when checking)	<13	check immediately					
Headlights and	13.4~14.6	normal					
air-condition on (need to step the gas	13.2~13.4	pay attention					
pedal when checking)	<13.2	check immediately					
The result can	be affected by the de	fective battery.					

★ Life check OK, and voltage check low

The result indicates the battery is good and full of 100% of life. But only 12.11V left. SO suggest charging.

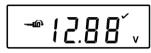
★ Life check OK, and voltage check over low

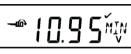
The result indicates the battery remain only 11.88V left and over low voltage, which can affect the result. At this time it is better to charge prior to checking again.

5-2 Engine system activation load test

5-2-1 Preparation

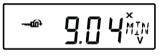
If the engine is working, please turn off first and switch the key to off location.


5-2-2 Procedure of operation


(1)Connect the red clamp to the positive polar of the battery, and the black one to the negative polar. Make sure they are well connected in order to avoid affected result.

(2)Press <A>< ∇ > to select activation load test as the picture below:

(3)After selecting the test item, press <ENTER> to display the activation load test screen as the picture below:


the current voltage

lowest starting voltage

Press $\langle A \rangle \langle \nabla \rangle$ to select "The current instant voltage" or "Minimum starting voltage". As can be seen in the picture current test voltage is 12.88V, standard voltage is 9.6V, and the lowest starting voltage is 10.95V.

(4)Star the engine to make the tester automatically record the lowest voltage in this process. Normally the voltage of battery will be higher than 9.6V in this process.

As the starting process, recorded the lowest voltage is lower than 9.6V, the instrument will beep and flash screen.

(5)Press <ESC> to return step (2).

5-2-3 Instruction of engine system test

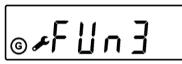
- ★ The lowest voltage higher than 9.6V means good.
- ★ The lowest voltage lower than 9.6V means no good.

Please check the relative connections, wire and engine. Also the terminals of the battery should be checked if rusted.

Data Reference Table (12V system)					
Activation Voltage	Discharge Performance	Suggestion			
>10.7V	good	continue to use			
10.2~10.7V	normal	pay attention			
9.6~10.2V	no good	replace soon			
<9.6V	bad	replace immediately			

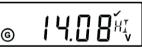
5-3 Charging system test

5-3-1 Preparation

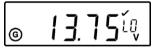

Please star the engine firstly.

5-3-2 Procedure of operation

(1)When the engine is working, connect the red clamp to the positive polar of the battery, and the black one to the negative polar. Make sure they are well connected in order to avoid affected result.


(2)Speed the engine to 3000 rpm.

(3)Press <A>< ∇ > to select charging system test as the picture below:


(4)After selecting the test item, press <ENTER> to display the charging system test screen as the picture below:

generator output current voltage

generator output highest voltage

generator output lowest voltage

The picture of generator output highest voltage indicates the current test voltage is 13.88V, the highest voltage is 14.08V, and the lowest voltage is 13.75V.

(5)Press <▲><▼> to select highest output screen and lowest output screen.

(6)As in the process, when the generator output the wrong highest voltage or lowest voltage, the instrument will appear the